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The formation of a gel in a two component disperse system wherein binary coagulation governs the temporal
changes to particle composition spectra is studied under the assumption that the coagulation kernel is propor-
tional to m1n2+m2n1, with m ,n being the numbers of monomers of the first and the second component in the
coalescing pair of particles. This model is shown to reveal the sol-gel transition, i.e., the formation of one giant
cluster with the mass comparable to the total mass of the whole system. This paper reports on the exact
solution of this model within the Marcus-Lushnikov stochastic scheme. The evolution equation for the gener-
ating functional of the probability to find in the system a given set of occupation numbers �the numbers of
particles containing m and n monomers of each component� at time t is formulated and solved exactly. The
expression for the particle composition spectrum is derived and analyzed in the thermodynamic limit. It is
shown that after a critical time a giant single particle �the gel� appears. The time evolution of its composition
is found. Special attention is given to the transition point, where the gel is appearing. The time dependencies
of the gel composition, the number concentration, and the second moments of the particle composition spec-
trum are found.
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I. INTRODUCTION

A wide variety of phenomena of quite a different nature
can be described as an aggregation process of the type

�k,l� + �p,q� → �m,n� = �k + p,l + q� , �1�

where the notation m ,n stands for an �m+n�-mer comprising
m and n monomers of the first and the second component,
respectively. The most evident example is coagulation of a
binary mixture, where a gas of M +N monomers of two sorts
begins to form mixed clusters containing m and n monomers
of each sort. This type of coagulation had been considered
almost three decades ago in Ref. �1�.

Although the role of coagulation processes is commonly
recognized and has been discussed in detail in papers �2–4�,
very little attention was given to coagulating mixtures. So far
this problem remained clear of the main stream of works on
theory of coagulation, although its importance is beyond any
doubt. It is enough to mention such phenomena like forma-
tion of atmospheric aerosols �5� and especially coagulation
of charged particles �6�.

The motivation of the present paper is, however, different.
It extends the results of Refs. �7–9� to a nontrivial and a very
instructive example of a coagulating mixture, wherein the
sol-gel transition occurs.

The first paper, where the pregelation behavior of a co-
agulating mixture had been studied was the work of my
group �10�. In this paper we investigated the coagulation of a
binary mixture starting with the traditional approach based
on the Smoluchowski equation

dtcm,n�t� = �
k,l,p,q

K�m,n�k,l;p,q�ck,l�t�cp,q�t� , �2�

where

K�m,n�k,l;p,q� = 1
2K�k,l;p,q���m,k+p�n,l+q − �m,k�n,l

− �m,p�n,q� . �3�

Here the coagulation kernel K�k , l ; p ,q� is the transition rate
for the process given by Eq. �1�. The first term on the right-
hand side �RHS� of Eq. �3� describes the gain in the
�m+n�-mer concentration due to coalescence of �k+ l�- and
�p+q�-mers �k+ p=m, l+q=n�, while the second one is re-
sponsible for the losses of �m+n�-mers due to their sticking
to all other particles. The notation �i,k stands for Kroneker’s
�. In Eq. �2� and throughout the paper we do not indicate
explicitly the interval of summation if it stretches from 0 to
�, i.e., �m means �m=0

� , �m,n=�m=0
� �n=0

� , m=n�0, etc.
The initial condition for Eq. �2� is

cm,n�0� = M�m,1�n,0 + N�m,0�n,1, �4�

where M ,N are the mass concentrations of the species. This
condition corresponds to the system initially containing mo-
nomeric particles of the first and the second sort, respec-
tively. The coagulation process merges them forming mixed
m+n-mers, the values M ,N remaining unchanged with
time. It is clear that the particles with m=n=0 never appear
in the coagulating system, i.e., c0,0�t�=0 for all t.

In this paper we investigate the coagulation process for
the coagulation kernel of the form

K�k,l;p,q� = ��kq + lp� . �5�

Here � is a dimension carrier of the kernel K. This kernel
describes realistic processes like copolymerization �11� or
time evolution of bipartite graphs �12�, the problem bearing
on the structures of weblike random nets �13�, percolation*Electronic address: alex.lushnikov@helsinki.fi
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transitions �14�, and second-order phase transitions �15,16�.
Coagulation in such systems leads to the sol-gel transition,
i.e., to formation of a giant object containing a macroscopic
number of monomers �a gel� �or a giant component in an
evolving random graph �17�� that appears in a finite interval
of time.

In what follows it is convenient to assume that

M + N = 1, �6�

which means that all concentrations are measured in units of
the total number concentration C0 of the monomers and the
unit for time is 1 /�C0.

For the coagulation kernel �5� the Smoluchowski equation
looks as follows:

dtcm,n�t� = �
k,l=0

m,n

�m − k�lcm−k,n−l�t�ck,l�t� − �mN + nM�cm,n�t� .

�7�

The exact solution to this equation found almost a quarter of
century ago in Ref. �10� had shown that the mass concentra-
tions of each component are conserved only at t� tc, where tc
is a critical time �defined below by Eq. �18��. After the criti-
cal time a single giant particle �gel� forms and the traditional
Smoluchowski scheme �Eq. �7�� fails to reproduce the kinet-
ics of the coagulation process.

This is the reason why here I apply an alternative ap-
proach based on the evolution equation for the generating
functional for the probabilities to have a given set of occu-
pation numbers �the numbers of m+n-mers� at time t �see �9�
and extensive citations therein�. As has been shown in �7–9�
this approach is appropriate when considering the sol-gel
transition and can be successfully applied to gelling mixtures
�18�.

In order to illustrate the main idea of this approach let us
consider a simple chemical reaction A+B→P, where two
substances A and B react producing a passive product P. Let
�o be the rate constant of this reaction. Then we can write
down two equations governing the kinetics of the reaction

dcA

dt
= − �ocAcB,

dcB

dt
= − �ocAcB, �8�

where cA and cB are the concentrations of the A and B com-
ponents, respectively. These equations are well known and
nobody doubts in their validity.

We, however, can apply a different approach for describ-
ing the kinetics of this simple reacting mixture. Let us con-
sider a volume V, wherein molecules A and B move chaoti-
cally, collide, and on colliding react producing P. Only pair
collisions of A and B are taken into account. The states of our
system can be characterized by two occupation numbers NA
and NB. Each collision act leads to the jump from the state
NA+1,NB+1 to the state NA ,NB with the rate �o /V.

At this step we introduce the probability W�NA ,NB ; t� to
find exactly NA and NB molecules in our system at time t and
write down the set of equations governing the time evolution
of the probability W

dW�NA,NB;t�
dt

=
�o

V
��NA + 1��NB + 1�W�NA + 1,NB + 1;t�

− NANBW�NA,NB;t�� . �9�

The products of the occupation numbers appearing on the
RHS of this equation is just the number of ways to create an
efficiently reacting pair of A and B molecules.

Now we are ready for the last step. Let us introduce the
generating function

��x,y:t� = � W�NA,NB;t�xNAyNB, �10�

where the summations goes over all nonnegative integers NA
and NB. It is easy to see that

V
��

�t
= �o�1 − xy�

�2�

�x � y
. �11�

This equation contains a full information on the evolution of
the reacting mixture. For example, the concentration cA

= N̄A /V=V−1�x��x ,1��x=1, where N̄A=�NAW�NA ,NB ; t� is the
average occupation number of the component A.

Equations �8� can be derived from Eq. �11� in the thermo-
dynamic limit �NX→�, V→� with 0�NX /V�� being fi-
nite. Here X=A ,B.�

Of course, Eq. �11� is much more complex than Eq. �8�.
On the other hand, Eq. �11� allows for considering the situ-
ations, where the number of reacting molecules is not large,
such as chemical reactions at the surface of an aerosol par-
ticles �19�. This approach is absolutely irreplaceable in con-
sidering the sol-gel transitions in coagulating system, for it
permits the consideration of finite number of coagulating
particles avoiding thus the paradox of the mass losses due to
gelation and the so-called gelation catastrophe �the diver-
gency of the second moments of the composition spectrum�.

The remainder of the paper is divided as follows. Section
II demonstrates that a gelation catastrophe occurs if the co-
agulation kernel is given by Eq. �5�. To this end the second
moments of the particle composition spectrum are demon-
strated to have a singular behavior at t→ tc, where tc
= �MN�−1/2 is the critical time. In Sec. III the evolution
equation governing the time dependence of the generating
functional for the probabilities to find a given set of occupa-
tion numbers �the numbers of monomers having exactly m
and n monomers� is formulated. This equation is solved ex-
actly in Sec. IV and the particle composition spectrum is
found in terms of polynomials analogous to those introduced
in Refs. �7–9� in considering the gelation in monocomponent
coagulating system and earlier in �20–22� for other purposes.
Section V analyzes the spectrum in the thermodynamic limit.
It is shown that a single giant particle whose mass and com-
position define the deficits of masses of each component in
the sol fraction of the spectrum eventually forms after the
critical time. The asymptotic expression for the composition
spectrum is derived and analyzed at t= tc. After the critical
time the composition distribution has a narrow maximum
located exactly at the point in the m ,n plane corresponding
to the gel particle. Two Appendixes introduce the set of poly-
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nomials necessary for the exact solution of the problem and
for the analysis of the thermodynamical limit of the compo-
sition spectrum.

II. GELATION CATASTROPHE

In the case of monocomponent system the divergency of
the second moment of the particle mass distribution evi-
dences on the sol-gel transition. Below we will see that simi-
lar behavior of the second moments is also observed in ge-
lating mixtures.

Let us calculate the time dependence of three second mo-
ments of the composition distribution

�20�t� = �
m,n

m2cm,n�t�, �02�t� = �
m,n

n2cm,n�t� ,

�11�t� = �
m,n

mncm,n�t� . �12�

Equation �7� allows one to derive the closed set of ordinary
differential equations for the moments

dt�20 = 2�11�20, dt�02 = 2�11�02,

dt�11 = �20�02 + �11
2 , �13�

with the initial conditions �20�0�=M, �02�0�=N, and
�11�0�=0. On introducing the variable x=2�0

t �11�t��dt� re-
duces the two first equations of set �13� to two linear equa-
tions of the form dx�=�, the solutions to which are

�20�x� = Mex, �02�x� = Nex. �14�

Now, from the third equation of the set Eq. �13� we have

d�11
2

dx
− �11

2 = MNe2x, �15�

or

�11�x� = �2MNex�ex − 1� . �16�

The time dependence of x is readily restored from its defini-
tion dtx=2�11

ex =
1

1 − �t/tc�2 , �17�

where the critical time tc is

tc =
1

�MN
. �18�

The final output of this calculation is the time dependence of
all three second moments

�20 =
M

1 − �t/tc�2 , �02 =
N

1 − �t/tc�2 ,

�11 = �MN t/tc

1 − �t/tc�2 . �19�

As in the case of gelling monocomponent systems �see Refs.
�9,23,24�� this singular behavior of the second moments evi-
dences on the gel formation at t	 tc.

III. EVOLUTION EQUATION

The approach of Refs. �23,24� is known to be able to
answer the question what is going on at and after the critical
time. Instead of the concentrations cm,n�t� this approach op-
erates with the occupation numbers nm,n �numbers of
m ,n-mers� and the probability W�	nm,n
 , t� to find a given set
	nm,n
 of occupation numbers at time t. Let us introduce the
generating functional ��	xm,n
 , t� for this probability

��	xm,n
,t� = �
	nm,n


W�	nm,n
,t�x0,1
n0,1x1,0

n1,0, . . . ,xm,n
nm,n. �20�

The summation on the RHS of this equation goes over all
possible sets 	nm,n
. The derivation of the evolution equation
for � repeats the scheme described in detail in Ref. �9� and
outlined above �Eqs. �8�–�11��. The final result is

V�t� = L̂� , �21�

where the generating functional depends on the set of formal
variables 	xm,n
, V is a volume of the coagulating system, and

the evolution operator L̂ has the form

L̂ =
1

2 �
m,n,k,l

K�m,n;k,l��xm+k,n+l − xm,nxk,l�
�2

�xm,n � xk,l
.

�22�

Equation �21� is entirely equivalent to the Master equation
for the probability W. Its derivation reminds in many re-
spects that of Eq. �11� and repeats all the steps necessary for
deriving Eq. �17� of Ref. �9�.

For the kernel �5� the evolution operator Eq. �22� can be
rewritten as

L̂ =
�

2�� �
m,n,k,l

�ml + nk�xm+k,n+l
�2

�xm,n � xk,l

 − N̂M − NM̂� ,

�23�

where M̂ and N̂ are the operators of the total masses of the
first and the second component, respectively

M̂ = �
m,n

mxm,n
�

�xm,n
, N̂ = �

m,n
nxm,n

�

�xm,n
.

The evolution operator L̂ commutes with M̂ and N̂, which
means that the functional � can be chosen as an eigenfunc-
tional of these mass operators

M̂�M,N�	xm,n
,t� = M�M,N�	xm,n
,t� ,

N̂�M,N�	xm,n
,t� = N�M,N�	xm,n
,t� .

The nonnegative integers M and N �the total numbers of the
monomers of the first and the second component, respec-
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tively� are the eigenvalues of these operators.
In what follows it is convenient to define the time scale by

the equality M +N=V and to introduce the mass concentra-
tions of monomers M=M /V, N=N /V. The total mass con-
centration of monomers is then M+N=1 in agreement with
the convention Eq. �6�.

IV. EXACT SOLUTION

The solution to Eq. �21� with the evolution operator given
by Eq. �23� can be found exactly in the same way as has been
done in Refs. �7–9� in solving the evolution equation with
the kernel proportional to the product of masses of coalesc-
ing particles.

We construct the mass conserving solution in the form

� = M ! N ! Coef
,��
−M−1�−N−1exp��
m,n

xm,nam,n�t�
m�n�
 ,

�24�

where the coefficients am,n�t� will be defined later on �see Eq.
�28��. The notation Coef introduced in Ref. �25� is used in-
stead of contour integrals. The point is that in what follows
we will deal with divergent series, where normal integration
is not applicable. The operation Coef is introduced as fol-
lows:

Coef
,�� �
m,n=−�

�

bm,n
m�n
 = b−1,−1. �25�

If the sum on the left-hand side �LHS� of this equation
converges the operation Coef can be replaced by respective
integrals. The operation Coef displays many features of or-
dinary residues.

The functional � given by Eq. �24� is the eigenfunctional

of M̂ and N̂. Indeed

M̂� = M ! N ! Coef
,��
−M−1�−N−1�
m,n

mam,nxm,n�t�
m�n

�exp��
m,n

xm,nam,n�t�
m�n�

=M ! N ! Coef
,��
−M−1�−N−1
�


�exp��
m,n

xm,nam,n�t�
m�n�

= M� .

The last equality of this chain follows from the identity
Coef
�
−MF��
��=MCoef
�
−M−1F�
�� �an analog of the inte-
gration by parts�.

The particle mass spectrum �the average number of m
+n-mers� n̄m,n�t� can be expressed in terms of am,n�t� as fol-
lows:

n̄m,n�t� = � ���	xm,n
,t�
�xm,n

�
	xm,n
=	1


= M ! N ! am,n�t�Coef
,�	
−M+m−1�−N+n−1

�exp�G�
,�;t��
 . �26�

Here

G�
,�;t� = �
m,n

am,n�t�
m�n �27�

is the bivariate generating function for am,n�t�.
On substituting � in the form �24� into Eq. �23� yields the

set of equations for am,n�t�

Vdtam,n�t� = �
k,l=0

m.n

�m − l�kam−l,n−k�t�al,k�t� + mnam,n�t�

− 1
2 �Mn + Nm�am,n�t� . �28�

This set is subject to the condition corresponding to initially
monodisperse particles

am,n�0� = �m,1�n,0 + �m,0�n,1. �29�

Indeed, the condition �29� corresponds to ��t=0=x1,0
M x0,1

N .
The equation for the generating function G can be readily

derived from Eqs. �27� and �28�

V
�G

�t
= 


�G

�

�

�G

��
+ 
�

�2G

�
 � �
−

1

2
�N


�G

�

+ M�

�G

��
� .

�30�

The initial condition for this equation is

G�
,�;0� = 
 + � . �31�

Now let

G�
,�;t� = D�
e−Nt/2,�e−Mt/2;t� . �32�

Then, instead of Eq. �30� we find a linear equation for eD

V
�eD

�t
= 
�

�2eD

�
 � �
. �33�

The formal solution to this equation with the initial condition
eD�
,�;0�=e
+� is

eD = �
m,n


m�n

m ! n!
exp�mnt/V� . �34�

From Eqs. �32� and �34� we find

Coef
,�
−M+m−1�−N+n−1 exp�G�
,�;t��

=
exp�− mNt/2 − nMt/2 + mnt/V�

�M − m� ! �N − n�!
. �35�

Next, the coefficients am,n�t� are readily restored from Eqs.
�32�, �34�, and �A15�,
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am,n�t� =
exp�− mNt/2 − nMt/2�

m ! n!

� �et/V − 1�m+n−1Fm−1,n−1�et/V� . �36�

Using Eqs. �26�, �35�, and �36� we come to the final result

n̄m,n�t� = �M

m
��N

n
�emnt/V−mNt−nMt

��et/V − 1�m+n−1Fm−1,n−1�et/V� . �37�

The polynomials Fm,n�x� are introduced in Appendix A.

V. THERMODYNAMIC LIMIT

The sol-gel transition happens at finite t. Therefore, as had
been done in �7–9� we investigate the exact mass spectrum
given by Eq. �37� assuming M ,N ,V→�, the total mass con-
centrations of each component M, N, and t being finite. At
large V and finite t the argument of Fm,n in Eq. �37� ap-
proaches unity.

A. The Smoluchowskii composition spectrum

At t� tc �no gel has formed� we can replace Fm,n by
Fm,n�1� �see Eq. �B3��

Fm,n�1� = Pm,n�0� = �m + 1�n�n + 1�m. �38�

We can thus write down the composition spectrum at m ,n

M ,N. On introducing the concentrations cm,n�t�
= n̄m,n�t� /V yields

cm,n�t� = MmNnmn−1nm−1

m ! n!
tm+n−1e−�mN+nM�t. �39�

As had been shown in Ref. �8� this spectrum is the solution
to the Smoluchowski equation �7�, with the initial condition
given by Eq. �4�.

In the limit of large m ,n we get

cm,n�t� �
1

2�tm3/2n3/2eFs�m,n;t�, �40�

where

Fs�m,n;t� = m�1 + ln�Mt� − Nt� + n�1 + ln�Nt� − Mt�

+ �n − m�ln
m

n
. �41�

It is easy to check that at t= tc= �MN�−1/2

Fs�m,n;tc� =
�M − �N

�MN
�m�N − n�M� − �m − n�ln

m�N
n�M

.

�42�

At t= tc and m�N=n�M the function Fs is zero together
with its first derivatives with respect to m and n, the spec-
trum becomes algebraic, as should it be at the critical point

cm,n�tc� �
�MN

2�m3/2n3/2 . �43�

In what follows we need the generating function
��
 ,� ; t� for cm,n�t�, which can be expressed in terms of the
bivariate exponential generating function ��
 ,� ;x� for the
polynomials Fm−1,n−1�x� introduced in Appendix A by Eq.
�A16�. The result is

��
,�;t� = � cm,n�t�
m�n =
1

t
��tMe−Nt
,tNe−Mt�;1� .

�44�

B. Mass concentrations

Here we use Eq. �44� in order to show that at t	 tc the
spectrum Eq. �39� does not conserve the total mass concen-
trations of the monomers, i.e.

�
m,n

mcm,n�t� =
1

t

0�
��
0,�0;1� = M�1 − �g�t�� , �45�

and

�
m,n

ncm,n�t� =
1

t
�0����
0,�0;1� = N�1 − �g�t�� , �46�

where the functions 1−�g�t� and 1−�g�t� define the deficit of
the mass concentrations due to formation of a gel particle.
Other notation


0�t� = Mte−Nt and �0�t� = Nte−Mt. �47�

Our aim now is to determine the functions �g�t� and �g�t�.
From Eq. �A9� we conclude that at x=1

�
� = e����, and ��� = e
�
�. �48�

On combining Eqs. �45�, �46�, and �48� finally gives

N�gt = ln
1

1 − �g
, M�gt = ln

1

1 − �g
�49�

or

�g = 1 − e−M�gt, �g = 1 − e−N�gt. �50�

This set of equations has the solution �g�t�=�g�t�=0 at t
� tc=1/�MN. A nontrivial nonzero solution appears only
after the gel point t= tc. Indeed, at small �g ,�g Eq. �50� can
be expanded up to the second order in �g ,�g. The result is

�g = N�gt −
�N�gt�2

2
, �g = M�gt −

�M�gt�2

2
. �51�

There are two solutions to this set of equations, �g=�g=0
and a nontrivial one which at small t− tc has the form

�g �
4N�M�t − tc�

�M + �N
, �g �

4M�N�t − tc�
�M + �N

. �52�

The positive nontrivial solution is seen to exist only at t
	 tc=1/�MN.

C. Number concentration

Again, Eq. �44� allows the total number concentration to
be expressed in terms of the function �
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C�t� = �
m,n

cm,n�t� =
1

t
��
0,�0;1� . �53�

In order to calculate C�t� we use Eq. �B5�. Noticing that
ln X0�
0 ,�0�=Nt�1−�g� and ln Y0�
0 ,�0�=Mt�1−�g� we
come to the following expression for the total number con-
centration:

C�t� = M�1 − �g� + N�1 − �g� − MNt�1 − �g��1 − �g� .

�54�

Let us derive the differential equation for C�t�. To this end
we differentiate both sides of Eq. �54� with respect to time

Ċ = − M�̇g − N�̇g − MN�1 − �g��1 − �g�

+ MNt��̇g�1 − �g� + �̇g�1 − �g�� ,

and use Eq. �49� for expressing �̇g and �̇g in terms of �g and
�g

�̇g = N�1 − �g���g + t�̇g�, �̇g = M�1 − �g���g + t�̇g� .

After some simple algebra one finds

dC

dt
= − MN�1 − �g�t��g�t�� . �55�

This equation shows that the concentration C�t� drops down
linearly with time at t� tc. Figure 1 clearly demonstrates this
fact. The slowest dependence C�t� on time realizes at small
concentration of one of the monomer. The shortest pregela-
tion period corresponds to the equal mass concentrations of
both components M=N=0.5.

D. Particle composition spectrum

Assuming m ,n to be large we approximate the exact spec-
trum Eq. �37� as follows:

n̄m,n�t� �
1

2�m3/2n3/2��1 − ���1 − ��
eF��,�;t�. �56�

Here �=m /V, �=n /V, V=M +N, and

F��,�;t� = − M��1 − ��ln�1 − �� + � ln ��

− N��1 − ��ln�1 − �� + � ln ��

− MN�� + � − 2���t/V

+ N� ln�1 − e−M�t� + M� ln�1 − e−N�t� .

�57�

In deriving this expression we used Eqs. �B9� and �B15�.
Equation �B9� shows that

F��,�;t� = ��M,N,�,�;t/V� . �58�

Hence, according to Eqs. �B13�, �B16�, and �58� the function
F�� ,� ; t� has a maximum at �=�g�t� and �=�g�t� given by
Eq. �49�. Next, F��g�t� ,�g�t� ; t�=0 �see Eq. �B13��.

E. Critical point

Let us analyze the behavior of the composition spectrum
Eq. �57� at the critical point t= tc= �MN�1/2 at small � and �
�� ,�
1�. To this end we expand F�� ,� ; tc� in powers of
� ,� and retain the terms up to the third order. As we will see
below this approximation is enough to get rid of the diver-
gencies in the sums defining the second moments of the par-
ticle composition spectrum. It is more convenient to present
the result in the variables m ,n

F�m,n;tc� �
�M − �N

�MN
�m�N − n�M� + �m − n�ln

n�M

m�N

−
1

2MN
�m�N − n�M�2

−
1

6
� m3

M2 +
n3

N2 −
m2n

4MN
−

mn2

4MN
� . �59�

One easily recognizes Fs�m ,n ; tc� in the first two terms of
this equation �see Eq. �42��. Other terms give the correction
related to the finiteness of the systems. They are finite only if
m ,n are comparable to the total volume V. The situation here
is exactly the same as in the case of gelation of a monocom-
ponent system �details see in Ref. �7��.

In what follows we will evaluate the moments ��,� of the
distributions given by Eq. �56� with F�m ,n ; tc�, where

��,� =
1

2�
�
m,n

m�−3/2n�−3/2eF��,�;tc�. �60�

In the above equation we ignore �, � in the preexponential
multiplier of Eq. �56�. This step will be justified below �right
after Eq. �67��

Let us introduce the polar coordinates

FIG. 1. Particle number concentration vs time �all values are
dimensionless�. Curves 1, 2, 3, correspond to the mass concentra-
tions M=0.1,0.25,0.5, respectively. Vertical lines show respective
critical times, tc1=3.33, tc2=2.31, and tc3=2. It is clearly seen that
below the transition point these dependencies are linear and only
after the gelation time they become more complex.
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m = r cos�, n = r sin� , �61�

and the angle

�0 = tan−1��N/M� . �62�

In these variables the function F has the form

F�r,�;tc� = − r� cos �0 − sin �0

sin �0 cos �0
sin�� − �0�

+ �sin � − cos ��ln�tan � cot �0�

−

r2

2V sin2 �0cos �0
sin2�� − �0� −

r3

6V2� cos3 �

cos2 �0

+
sin3 �

sin2 �0
−

cos2 � sin �

4 sin �0 cos �0
−

cos � sin2 �

4 sin �0 cos �0
� .

�63�

In the limit V→� the following approximations can be
done:

�1� The sums in Eq. �60� are replaced by integrals.
�2� The function eF differs from zero in a very narrow

interval of � in the vicinity �0. All functions depending on �
are then expanded up to the second power of the difference
�−�0.

�3� The interval of integration over � is extended from
−� to �.

�4� The second term on the RHS of Eq. �63� does not
contribute to the integral.

�5� In the third term on the RHS of Eq. �63� we put
�=�0.
The validity of these approximation will be justified later on.

The above-listed approximations allow for considerable
simplifications in Eq. �63�,

F = − rA�� − �0�2 −
r3

V2B , �64�

where

A =
cos �0 + sin �0

2 sin2 �0 cos2 �0
, B =

1

8
�cos �0 + sin �0� . �65�

The expression for F can be rewritten as

F = −
r�2

r0�0
2 −

r3

r0
3 , �66�

where �=�−�0 and

r0 = V2/3B−1/3 and �0 = V−1/3A−1/2B1/6. �67�

Now let us justify the approximations leading to Eq. �64�.
Equation �67� shows that the characteristic intervals of inte-
gration in the expression for I�� ,�� �Eq. �60�� are of the
order of r0�V2/3 and �0�V−1/3. The second term on the RHS
of Eq. �63� is estimated as r2�2 /V�V−1/3 and can be ignored
as V→�. We thus have

��,� =
1

2�
r0

�+�−1�0 cos�−3/2 �0 sin�−3/2 �0I�,�, �68�

where

I�,� = �
0

�

dx�
−�

�

d�x�+�−2e−�2x−x3
. �69�

On integrating yields

��,� = r0
�+�−1�0 cos�−3/2 �0 sin�−3/2 �0

1

6��
��� + �

3
−

1

2
� .

�70�

This equation allows us to obtain the critical values of the
second moments. The results are

�11 =
1

3�2�
��1

6
�V1/3

�sin �0 cos �0

�sin �0 + cos �0�2/3�20

=
1

3�2�
��1

6
�V1/3

�cot �0 cos �0

�sin �0 + cos �0�2/3 ,�02

=
1

3�2�
��1

6
�V1/3

�tan �0 sin �0

�sin �0 + cos �0�2/3 . �71�

These formulas for the second moments can be summarized
as

��,� = ��,�V1/3. �72�

The values of the reduced moments ��,� can be expressed in
terms of M and N �M+N=1�

�1,1 =
M1/4N1/4

��M + �N�2/3
, �2,0 =

M5/4N−1/4

��M + �N�2/3
. �73�

Interchanging M and N in the last formula gives �0,2. At the
critical point the second moments begin to depend on the
total volume of the coagulating system. As in the case of one
component system this dependence is algebraic �V1/3�. How-
ever, the coefficients ��,� �reduced second moments� depend
on the composition of the gelating mixture. This dependence
is displayed in Fig. 2.

VI. CONCLUDING REMARKS

Starting with the approach based on the evolution equa-
tion for the generating functional for the probabilities to have
a given set of occupation numbers �the numbers of
m ,n-mers� at time t �Sec. III� the sol-gel transition in the
coagulating mixture has been considered. Section II has
demonstrated that the gelation catastrophe similar to that in
one component systems occurs if the coagulation kernel is
given by Eq. �5�. To this end the second moments of the
particle mass composition has been shown to have a singular
behavior at t→ tc, where tc= �MN�−1/2 is the critical time.
The evolution equation governing the time dependence of
the generating functional for the probabilities to find a given
set of occupation numbers formulated in Sec. III has been
solved exactly �Sec. IV�. The particle composition spectrum
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has been expressed in terms of special polynomials Fm,n�x�
introduced and considered in detail in Appendixes A and B.
The analysis of the composition distribution in the thermo-
dynamic limit has been performed in Sec. V. It has been
shown that a single giant particle whose mass and composi-
tion define the deficits of masses of each component in the
sol fraction of the spectrum eventually forms after the critical
time. The asymptotic expression for the composition spec-
trum has been derived and analyzed at t= tc. After the critical
time the composition distribution has been shown to have a
narrow maximum located exactly at the point in the m ,n
plane corresponding to the gel particle. The trajectory of this
maximum in the m ,n plane is described by Eqs. �49� which
can be rewritten as

n ln�1 − n/N� = m ln�1 − m/M� . �74�

This trajectory is shown in Fig. 3.
The similarity with the gelation in one component sys-

tems is apparent, although the description of the process in
mixtures is much more complex. As in one component sys-
tems only one gel particle forms after the critical time. The
critical values of the second moments grow with the volume
of the system as V1/3 �exactly as in the one component sys-
tem�, but the coefficients ��,� in two component system de-
pend on the composition of the coagulating system. It is also
interesting to emphasize that the ratio of concentrations of
two components in the gel particle right after the critical time
is M�g /N�g=�MN �Eq. �52��.

The approach described above can be applied to other
systems. The most general form of the coagulation kernel
that admits the exact solution of Eq. �21� in the form Eq. �24�
is

K�k,l:p,q� = kf0�q� + lf0�p� + pf0�l� + qf0�k� + kf1�p�

+ pf1�k� + qf2�l� + pf2�k� , �75�

where the functions f i�x� are arbitrary. It is seen that the

kernel K�k , l : p ,q� is symmetric, i.e., K�k , l : p ,q�
=K�p ,q :k , l�. Equation �75� is an extension of linear models
introduced in Ref. �10�.

APPENDIX A: POLYNOMIALS Fm,n

Here we pass the route from Eq. �26� to Eq. �37�. To this
end we introduce the function

Q�
,�;x� = �
m,n


m�n

m ! n!
xmn, �A1�

and

W�
,�;x� = ln Q�
,�;x� = �
m,n

Cm,n�x�

m�n

m ! n!
, �A2�

with C1,0=C0,1=1 and C0,0=0.
Let us now rewrite equation �A1� in the form

Q�
,�� = �
n

�n

n!
e
xn

= e
�
n

�n

n!
e
�xn−1�. �A3�

Hence, the function

W�
,�� = 
 + ln��
n

�n

n!
e
�xn−1�
 , �A4�

generates all Cm,n. For example

��W�
,����=0 = e�x−1�
,

and thus Cm,1= �x−1�m. Next

��,�
2 W�
,����=0 = e�x2−1�
 − 2e2�x−1�
.

This function generates all Cm,2

Cm,2 = �x − 1�m��x + 1�m − 2m� .

It is not so difficult to continue in this spirit

FIG. 2. Reduced second moments ��,� as the functions of N
�M+N=1�. The moment �2,0 displays less symmetric dependence
on N than �1,1.

FIG. 3. After the critical time a very narrow maximum �the gel�
in the particle composition distribution appears which then moves
along the trajectories in the m ,n plane. These trajectories are shown
for M=0.1, 0.25, 0.5 �curves 1–3, respectively�.
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Cm,3 = �x − 1�m��x2 + x + 1�m − 3�x + 2�m + 2 � 3m� .

In particular, we find

C2,2 = �x − 1�3�x + 3�, C23 = �x − 1�4�x2 + 4x + 7� ,

C33 = �x − 1�5�x4 + 5x3 + 15x2 + 29x + 31� . �A5�

Equation �A2� allows for deriving two sum rules for Cm,n�x�.
It is evident that

Q�
W = �
Q and Q��W = ��Q . �A6�

On substituting here expansions �A1� and �A2� gives

�
p,q=0

m,n �m

p
��n

q
�x−pn−qm+pqCp+1,q�x�

= �
p,q=0

m,n �m

p
��n

q
�x−pn−qm+pqCp,q+1�x� = 1. �A7�

These identities are of use in deriving the expression for the
composition spectrum in the thermodynamic limit.

Now let us derive the set of recurrence relations for
Cm,n�x� �Eq. �A12��, it is easy to see that

�
Q�
,�;x� = Q�
,x�;x� ,

and

��Q�
,�;x� = Q�x
,�;x� . �A8�

Hence,

�
W�
,�,x� = eW�
,x�;x�−W�
,�;x�,

and

��W�
,�,x� = eW�x
,�;x�−W�
,�;x�. �A9�

On combining Eqs. �A9� and �A2� yields

�
m,n

Cm+1,n�x�

m�n

m ! n!
= exp��

m,n
Cm,n�x�


m�n

m ! n!
�xn − 1�
 .

�A10�

Next, we apply Eq. �A9� for finding �2W /�
��

�2W

�
 � �
= �

m,n
Cm+1,n+1


m�n

m ! n!

= �
�,�

C�,�+1

���

� ! �!
�x�+1 − 1��

�,�
C�+1,�


���

� ! �!
.

�A11�

The summations in the two above equations go over all non-
negative integers.

Equation �A11� is equivalent to the set of recurrence re-
lations

Cm+1,n+1 = �
p,q=0

m,n � m

m − q
�� n

n − p
�Cm−q,p+1Cq+1,n−p�xp+1 − 1� .

�A12�

At this stage we introduce the polynomials Fm,n�x�. They are
defined as

Cm+1,n+1�x� = �x − 1�m+n+1Fm,n�x� . �A13�

On substituting Eq. �A13� into Eq. �A12� gives the recur-
rence for the polynomials Fm,n�x�

Fm+1,n+1�x� = �
p,q=1

m,n � m + 1

m + 1 − q
�

�� n + 1

n + 1 − p
�Fm−q,p�x�Fq,n−p�x�

xp+1 − 1

x − 1
.

�A14�

The lowest order polynomials are, F0,0=0, F0,1=F1,0=1, and

F1,1�x� = x + 3, F1,2�x� = F2,1�x� = x2 + 4x + 7,

F2,2�x� = x4 + 5x3 + 15x2 + 29x + 31, . . . .

We finally come to the central identity allowing for deriving
the exact mass spectrum �37�

ln��
m,n


m�n

m ! n!
xmn� = �

m,n=1

�

m�n

m ! n!
�x − 1�m+n−1Fm−1,n−1�x�

+ 
 + � . �A15�

The exponential generating function for the polynomials
Fm,n�x� is introduced as

��
,�;x� = �
m,n=1

�

Fm−1,n−1�x�

m�n

m ! n!
+ 
 + � . �A16�

On the other hand, using Eq. �A13� we find

���x − 1�
,�x − 1��;x� = �x − 1�W�
,�;x� . �A17�

Equation �A9� allows us to derive the set of equations for
��
 ,� ;x�. We introduce �x−1�
=a and �x−1��=b. Then
Eq. �A17� can be rewritten as

��a,b;x� = �x − 1�W� a

x − 1
,

b

x − 1
;x� . �A18�

On differentiating both sides of this equation with respect to
a and b and using Eq. �A9� yield the set of functional equa-
tions for �

���a,b;x�
�a

= exp���a,xb;x� − ��a,b;x�
x − 1


 ,

���a,b;x�
�b

= exp���xa,b;x� − ��a,b;x�
x − 1


 . �A19�
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APPENDIX B: POLYNOMIALS Pm,n„�…

Equations �A19� can be rewritten in a more symmetric
form

ln X��a,b� = b�
0

1

Y��a,�1 + u��b�du,

ln Y��a,b� = a�
0

1

X���1 + u��a,b�du . �B1�

Here �=x−1 and

X��a,b� = �a��a,b;1 + ��, Y��a,b� = �b��a,b;1 + �� .

It is clear that X� and Y� are the bivariate exponential gener-
ating functions for the polynomials Pm,n−1���=Fm,n−1�1+��
and Pm−1,n���=Fm−1,n�1+��

X��
,�� = � Pm,n−1���

m�n

m ! n!
,

Y��
,�� = � Pm−1,n���

m�n

m ! n!
. �B2�

1. The case �=0

It is easy to show that

Pm,n�0� = �m + 1�n�n + 1�m. �B3�

Indeed, let us introduce

u�
,�� = ln X�
,�;0� and v�
,�� = ln Y�
,�;0� .

From Eq. �B1� we find

u = �ev, v = 
eu. �B4�

Then we can find Pm,n�0� from the following chain of equali-
ties

Pm,n�0� = m ! �n + 1� ! Coef
,�
X�
,�;0�

m+1�n+2

= m ! �n + 1� ! Coefu,v
eu�m+2�+v�n+2�

vm+1un+2 e−�u+v��1 − uv� .

Elementary algebraic transformations prove Eq. �B3�. The
multiplier e−�u+v��1−uv� in the last term is just the Jacobian
appearing in replacing the variables 
 ,�→u ,v.

It is easy to find the first several polynomials. From Eq.
�A15� we have

P1,1��� = � + 4, P1,2��� = P2,1��� = �2 + 6� + 12,

P2,2��� = �4 + 9�3 + 36�2 + 78� + 81, . . . .

The generating function ��
 ,� ;1� can be expressed in
terms of X0�
 ,�� and Y0�
 ,�� as follows:

��
,�;1� = ln X0 + ln Y0 − ln X0 ln Y0. �B5�

In order to prove this identity it is enough to differentiate Eq.
�B5� with respect to �. The left-hand side gives simply

����
 ,� ;1�=Y0�
 ,��. We will show that the right-hand side
of this equation reproduces the same result. Indeed, as it
follows from Eq. �B1� X0 and Y0 obey the set of transcendent
equations

ln X0 = �Y0, ln Y0 = 
X0.

These equations allow us to find the derivatives

�X0

��
=

Y0

1 − ln X0 ln Y0
,

�Y0

��
=

Y0 ln Y0

1 − ln X0 ln Y0
.

Now we differentiate the right-hand side of Eq. �B5�

ln�� X0 + ln�� Y0 − ln�� X0ln Y0 − ln X0 ln�� Y0

= ln�� X0�1 − ln �Y0� + ln�� Y0�1 − ln �X0�

=
Y0�1 − ln Y0� + Y0 ln Y0�1 − ln X0�

1 − ln X0 ln Y0
= Y0.

This result proves Eq. �B5�.

2. Asymptotic analysis

Now we use Eq. �A7� for deriving the asymptotic formula
for the polynomials Pm,n��� in the limit m ,n→�, �→0,
m� ,n���. The answer can be easily guessed

Pm,n��� � mnnmhm�n��hn�m�� , �B6�

where

h�x� =
sinh x/2

x/2
. �B7�

The analogy with my recent result �5–7� is clearly seen.
In order to prove Eq. �B6� we rewrite the first Eq. �A7� in

the exponential form

�
p,q

e��m,n,p�,q�;�� = 1, �B8�

where p�= p /m, q�=q /n, and

��m,n,p�,q�;�� = − m��1 − p��ln�1 − p�� + p� ln p��

− n��1 − q�� ln�1 − q�� + q� ln q��

− mn�p� + q� − p�q��� + mp�H�nq���

+ nq�H�mp��� . �B9�

The idea is that the terms of the order of unity contribute to
the right-hand side of Eq. �B8�. Next, these terms correspond
to the maximum of e�. We assumed also that Cp,q
�epH�q��+qH�p��, in accordance with Eq. �B6�

Let us analyze the condition for the maximum of � with
respect to p�. It gives

− m�− ln�1 − p�� + ln p�� − mn��1 − q�� + mH�nq���

+ mnq��H��mp��� = 0. �B10�

Now we introduce the variables x=mp�� and y=nq�� and
rewrite Eq. �B10� in terms of these variables
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ln�1 − p�� − ln p� −
y

q�
+ y + H�y� + yH��x� = 0.

�B11�

Similar equation holds for q�

ln�1 − q�� − ln q� −
x

p�
+ x + H�x� + xH��y� = 0.

�B12�

Together with the condition

��m,n,p�,q�;�� = 0. �B13�

we have three equations for determining p�, q�, and H as the
functions of x and y.

Equations �B11� and �B12� can be resolved under the con-
dition that p��x ,y�= f�y� and q��x ,y�= f�x�. In this case a
separation of variables is possible and both Eqs. �B11� and
�B12� give one and the same couple of equations for f��� and
H���

ln�1 − f� − ln f + � + H���
�

=
1

f
− H���� = a . �B14�

Here a is a separation constant. Its value determined from the
condition �B13� is a=1/2. Then we find from Eq. �B14�,

f��� = 1 − e−� and H��� = ln�2 sinh��/2�� . �B15�

It is easy to check that

p��x,y� = 1 − e−nq��x,y��, q��x,y� = 1 − e−mp��x,y��.

�B16�

meet equation �B13�.

At small � we find

H��� � ln � +
�2

24
. �B17�

3. Polynomials Pm,n and graphs

In conclusion of this appendix, I will show that the poly-
nomial Pm−1,n−1��� allows one to find the number Cm,n;� of
linked bipartite labeled graphs of the order of m ,n with given
number of edges �. Namely, I will prove that the combina-
tion �m+n−1Fm−1,n−1��� generate Cm,n;�, i.e.

�m+n−1Pm−1,n−1��� = �
�=m+n−1

mn

Cm,n;���. �B18�

The idea of the proof is adopted from Ref. �13�, where simi-
lar theorem is proved for ordinary graphs �having one type of
vertices�.

The number of ways to connect m ,n vertices of a bipartite
graphs by � edges is � nm

�
�. Then the polynomial �1+��mn is

the generation function for the number of labeled graphs
with given number of edges. The bivariate exponential gen-
erating function for all bipartite graphs is

�
m,n


m�n

m ! n!
�1 + ��mn.

The reader readily recognizes the function Q�
 ,� ;1+��
given by �Eq. �A1��. Hence, Q is the generating function for
all labeled bipartite graphs. According to the Riddel theorem
�26� the function W=ln Q is the generating function for all
linked bipartite graphs. Then Eq. �A15� immediately follows
from Eq. �B18�.
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